近日,金沙威尼斯欢乐娱人城广州生物医药与健康研究院舒晓东团队研究鉴定出一类具有双苄基异喹啉(BBIQ)结构的生物碱小分子化合物可以有效抑制铁死亡,相关成果以“Identification of a group of bisbenzylisoquinoline (BBIQ) compounds as ferroptosis inhibitors”为题发表于Cell Death and Disease杂志上。 近日,金沙威尼斯欢乐娱人城广州生物医药与健康研究院舒晓东团队研究鉴定出一类具有双苄基异喹啉(BBIQ)结构的生物碱小分子化合物可以有效抑制铁死亡,相关成果以“Identification of a group of bisbenzylisoquinoline (BBIQ) compounds as ferroptosis inhibitors”为题发表于Cell Death and Disease杂志上。 铁死亡是一种脂质过氧化诱导的程序性细胞死亡,它参与了多种疾病的发病进程,如神经退行性疾病、缺血再灌注损伤、急性肾损伤等。抑制铁死亡的发生能有效阻止相关疾病的发展。目前临床上缺乏能应用的铁死亡抑制剂,因此开发针对铁死亡通路其它靶点、且体内有效的小分子抑制剂是相关研究领域的一个重要课题。 生物碱是一类含氮的天然化合物,存在多种中草药植物中,大部分具有良好的抗氧化活性。由于铁死亡的发生涉及氧化还原过程,因此本研究首先利用细胞模型、通过对生物碱小分子化合物库的筛选鉴定出多个能有效抑制铁死亡的小分子化合物,通过结构分析,发现一类具有BBIQ结构的生物碱能有效抑制RSL3或Erastin诱导的铁死亡。进一步的生化分析发现这类小分子主要是通过清除脂质自由基来抑制铁死亡。在高剂量叶酸诱导的小鼠急性肾损伤(AKI)模型中,多个上述小分子抑制剂有良好的肾保护活性,因此,这些BBIQ是一类有较好体内活性的新型铁死亡小分子抑制剂。 广州生物医药与健康研究院舒晓东课题组范宜普博士生以及广州再生医学与健康实验室张艺瀚副研究员为该论文的共同第一作者,广州再生医学与健康实验室石昆钰硕士和西湖大学成珊硕士参与了该项目,广州生物医药与健康研究院舒晓东研究员为本文通讯作者。该研究得到了国家重点研发计划、中科院先导计划、广州市科技计划等多个项目的支持。 图A:千金藤素(Cepharanthine)清除脂质活性氧;图B:千金藤素(Cepharanthine)抑制AKI
燃气热泵(Gas Engine-driven Heat Pump,GHP)是天然气发动机驱动的先进热泵系统,单一系统可提供制冷、供暖及生活热水等多种用能需求,实现能源的梯级高效利用,是符合“双碳”背景下的先进低碳节能技术,其中GHP控制系统是其核心组成部分。金沙威尼斯欢乐娱人城广州能源研究所储能技术研究室冯自平团队长期致力于燃气热泵技术及系统的深入研究,近期提出一种GHP嵌入式控制系统,用于监控燃气热泵冷热水机组。该研究成果以Control system and operational characteristics of gas engine-driven heat pump为题,发表于制冷领域国际学术期刊International Journal of Refrigeration。 燃气热泵(Gas Engine-driven Heat Pump,GHP)是天然气发动机驱动的先进热泵系统,单一系统可提供制冷、供暖及生活热水等多种用能需求,实现能源的梯级高效利用,是符合“双碳”背景下的先进低碳节能技术,其中GHP控制系统是其核心组成部分。金沙威尼斯欢乐娱人城广州能源研究所储能技术研究室冯自平团队长期致力于燃气热泵技术及系统的深入研究,近期提出一种GHP嵌入式控制系统,用于监控燃气热泵冷热水机组。该研究成果以Control system and operational characteristics of gas engine-driven heat pump为题,发表于制冷领域国际学术期刊International Journal of Refrigeration。 论文详细介绍了控制系统架构以及各功能模块,阐述了GHP控制器如何与发动机ECU实时可靠通讯,进而实现发动机转速、启停等控制。由于外部环境和热负荷的不断变化,GHP系统具有滞后、非线性和时变特点,需要实时调整发动机档位,通过精细化控制实现GHP系统的出水温度快速逼近并稳定在目标值。文章还通过制冷和制热实验,讨论了基于该控制系统的GHP系统的运行特性。研究结果表明,通过主控制器对发动机转速和蒸发器过热进行双闭环控制,可以保证GHP冷热水机组出水温度的稳定性和准确性。在制热模式下,随着发动机转速从1200 rpm逐渐增加到2400 rpm,热泵的制热能力从42.37千瓦增加到75.2千瓦,而GHP系统的制热能力则从56.18千瓦增加到105.87千瓦。发动机的废热回收显著提高了系统供热能力和一次能源利用率。对GHP的控制系统和运行特性的研究有助于大幅提高GHP系统的性能。 文章链接:https://authors.elsevier.com/a/1gA9QV-TmZVtL <!--[endif]--><!--[if gte mso 9]> <![endif]--> GHP主控制器主要功能模块 GHP主控制器电路板
近日,金沙威尼斯欢乐娱人城广州生物医药与健康研究院与澳门大学合作在Cell Reports在线发表题为Vibrio parahaemolyticus prey targeting requires autoproteolysis-triggered dimerization of the type VI secretion system effector RhsP的研究论文。研究发现,肠炎弧菌效应蛋白RhsP形成一个桶状结构,通过自水解引发桶内VIR(VgrG2-interacting region)肽段明显的构象变化,并进一步证明这一构象变化促进了RhsP二聚体的形成,释放核酸酶毒素,提示RhsP以自水解发生构象变化进而促进二聚体形成来靶向猎物细胞这一分子机制,为潜在新型抗感染手段的开发提供了分子机制和理论基础。 近日,金沙威尼斯欢乐娱人城广州生物医药与健康研究院与澳门大学合作在Cell Reports在线发表题为Vibrio parahaemolyticus prey targeting requires autoproteolysis-triggered dimerization of the type VI secretion system effector RhsP的研究论文。研究发现,肠炎弧菌效应蛋白RhsP形成一个桶状结构,通过自水解引发桶内VIR(VgrG2-interacting region)肽段明显的构象变化,并进一步证明这一构象变化促进了RhsP二聚体的形成,释放核酸酶毒素,提示RhsP以自水解发生构象变化进而促进二聚体形成来靶向猎物细胞这一分子机制,为潜在新型抗感染手段的开发提供了分子机制和理论基础。 细菌Ⅵ型分泌系统(Type VI secretion system, T6SS)广泛存在于革兰氏阴性菌中,其构造类似于噬菌体尾管,主要通过挂载并分泌不同的毒素效应蛋白来攻击猎物细胞并取得菌群竞争优势。其中Rhs家族蛋白是一类大型效应蛋白,通过其C端的核酸酶毒素切割猎物细胞DNA以达到杀死猎物的目的。同时,在毒素效应蛋白基因组的下游通常伴随可以中和其毒性的免疫因子的表达,这也使得携带Rhs毒素的细菌能够保护自身不受影响。T6SS如何分泌Rhs这样的大型效应蛋白的分子机制一直是领域内的热点和难点,而Rhs家族效应蛋白如何释放核酸酶毒素这一过程也未得到明确的解析。 本研究首先在致病性肠炎弧菌中发现了一个能够自水解的T6SS效应蛋白RhsP,进一步通过生化实验发现RhsP自水解为三个片段,N端、 Rhs桶和具有核酸酶毒性的C端(图1A)。为了解答自水解这一过程对RhsP的分泌和核酸酶毒素释放的作用,团队利用单颗粒冷冻电镜技术获得了RhsP自水解后(cleaved RhsP)和RhsP自水解前(Uncleaved RhsP)的高分辨结构(图1B)。对自水解前后的RhsP的高分辨结构分析后发现,Rhs区域形成了一个封闭的桶状结构。N端肽段从桶盖顶部缝隙延伸出去,提示N端水解后的离开轨迹(图2A)。另外,发生水解后的VIR在构象上发生了巨大变化,它以U形在桶内伸展并将含有核酸酶毒素的VIR-C端送出到桶盖上移引起的缺口处(图2B)。最后,通过结构分析发现VIR结合β-sheet的疏水内表面,通过构建VIR-C端F1208A/Y1209A突变株验证了RhsP自水解后引发VIR构象变化促进二聚体的形成。 本研究通过生化实验和冷冻电镜等手段,捕捉了效应蛋白自水解前后瞬间的构象变化,发现RhsP的自水解过程引发了Rhs桶状结构的构象变化,揭示了释放核酸酶毒素的分子机制,同时也发现了VIR区域构象变化促进的RhsP二聚体形成,是其靶向猎物细胞的关键步骤(图3)。 澳门大学博士后唐乐、金沙威尼斯欢乐娱人城广州生物医药与健康研究院博士生董淑琦、澳门大学博士后Nadia Rasheed和博士生胡巧颖、生物岛实验室科研助理周宁坤为本文共同第一作者。澳门大学William Chong Hang Chao教授、金沙威尼斯欢乐娱人城广州生物医药与健康研究院何俊研究员和澳门大学郑军教授为本文的共同通讯作者。该研究得到了澳门大学、澳门特别行政区科学技术发展基金以及国家自然科学基金、广东省自然科学基金等的资助。 论文链接 图1 A: 毒素效应蛋白RhsP结构域示意图,B: RhsP自水解前后高分辨蛋白结构图 图2 A: RhsP自水解前后N端肽段轨迹图,B: RhsP自水解前后VIR构象变化图 图3 RhsP自水解引发的二聚体形成并靶向猎物细胞的步骤模型
土壤是陆地生态系统最大的碳库,至少有一半的土壤有机碳储存于森林中。热带和亚热带森林主导全球森林碳循环,它们占据全球森林78%总碳排放和55%总碳吸收。人类活动也导致大气氮沉降加剧,氮沉降通过影响植物生长和微生物活性改变森林土壤的碳固持能力。但目前学术界关于氮沉降如何影响森林土壤碳库及其碳库组分的研究还存在很多不足。 中科院华南植物园小良站研究人员以热带森林长期(14年)氮磷添加地为研究对象,研究了氮沉降和磷添加对土壤有机碳及其不同的碳库组分,以及球囊霉素和微生物残体碳的影响。研究发现,氮沉降提高了土壤有机碳库总量,并且主要提升了易分解碳库组分,而磷添加显著降低了土壤中难分解碳库组分,并有降低土壤总有机碳库的趋势。进一步分析土壤酶活性和真菌群落组成发现,磷添加提升了部分氧化酶的活性以及土壤中氧化酶相关基因的表达量。这表明热带地区高氮低磷的环境有利于土壤有机碳的固持,但其增加的碳主要是易分解的碳库组分,其稳定性下降。相关结果以Nitrogen deposition in low-phosphorus tropical forests benefits soil C sequestration but not stabilization为题在线发表于Ecological Indicators(《生态指标》) (IF5=6.3)上。 文章链接:https://www.sciencedirect.com/science/article/pii/S1470160X22012341 在此基础上,小良站研究人员进一步分析了氮沉降背景下土壤中各种微生物来源碳组分的变化。氮沉降处理下,土壤球囊霉素、微生物残体碳与土壤有机碳含量均较高,但土壤微生物量和群落组成基本不受影响,表明土壤中球囊霉素和微生物残体碳地较高含量是长期积累和微生物降解受到抑制的结果。然而,球囊霉素或微生物残体碳对土壤有机碳的相对贡献没有变化或低于对照,这是因为其他碳源对土壤有机碳的贡献更大,而这些碳源与土壤矿物质的结合在很大程度上不稳定。该结果进一步证实热带森林在响应氮沉降过程中具有较好的有机碳封存潜力,有助于减缓气候变化。然而,施氮土壤中增加的有机碳大部分与土壤矿物质无关,因而容易分解释放到大气中。该研究结果以“Nitrogen deposition enhances soil organic carbon and microbial residual carbon in a tropical forest”为题在线发表在Plant and Soil(《植物和土壤》)(IF5=5.6)上。文章链接:https://doi.org/10.1007/s11104-022-05787-6 该系列研究得到了国家自然科学基金面上项目、广东省科技厅野外台站项目、中科院青促会项目和广东省杰青项目等资助。 图 1:概念图显示了氮磷添加处理下热带森林土壤有机碳总量及其不同碳库组分的变化趋势,以及潜在的微生物机制。 图 2:概念图显示了在氮添加条件下球囊蛋白相关土壤蛋白和微生物残体碳的积累对土壤有机碳含量的影响,以及潜在的微生物机制。