科研进展
  • 广州地化所:针对月球样品的Sr, Nd, Sm单柱分离和TIMS高精度测定方法
    87Rb-86Sr, 147Sm-143Nd, and 146Sm-142Nd 同位素体系是地球化学和宇宙化学研究中重要的定年和示踪工具。Rb、Sr、Sm 和 Nd 都是不相容元素,Rb-Sr体系中母体Rb 比 Sr 更不相容,Sm-Nd 体系中则是子体Nd 比 母体Sm 更不相容。因此,87Rb-86Sr和147Sm-143Nd体系作为互补。另外,灭绝核素146Sm衰变为142Nd的半衰期为103 Ma(或68 Ma), 可精确限定太阳系形成后500 Ma的历史事件。同时Sm同位素可以用来监控地外样品因遭受宇宙射线而造成的Nd同位素变化。因此,同时从一份样品中分离出Sr,Nd和Sm并对其进行高精度同位素比值测定对地外样品尤其重要。   在过去的研究中,化学分离的方法通常是针对样量 > 50 mg的样品,使用2-4柱或多种树脂混用分离法,分离流程复杂,用时长,空白高,回收率较低,且目前仍没有可以同时分离出Sr, Nd, Sm的化学方法。目前也没有针对小样量样品(Sm<100 ng)的Sm同位素比值高精度TIMS测定方法。   针对以上问题,金沙威尼斯欢乐娱人城广州地球化学研究所王桂琴博士团队研发的超低样量化学纯化方法,实现了单柱分离< 3 mg样品中的Sr、Nd和Sm,三种元素的回收率均 > 91%。全流程空白分别为Sr < 80 pg、Nd < 7 pg、Sm < 3 pg,具回收率高、空白低的优点。尤其重要的是实现了Nd与Ce的完全分离,消除了142Ce对高精度142Nd测定的影响,因而保障了142Nd的测定准确度。化学流程曲线见图1。   同时研究团队还建立了微量样品的Sr, Nd和Sm同位素高精度热电离质谱(TIMS)测定方法。采用法拉第杯和新型10 12和10 13 放大器,对Sr, Nd和Sm同位素组成分别进行静态分析(图2)。对30 ng的标准溶液和~3 mg的实际样品进行测定的结果表明,尽管我们样品使用量小于常规方法的1/3-1/10,但测定比值与已发表的数据一致,精度与常规方法最佳精度基本一致。   金沙威尼斯欢乐娱人城广州地球化学研究所王桂琴博士团队建立的超低样量化学纯化和仪器分析方法适用于月球、火星等珍贵样品,以及单颗粒矿物的Sr,Nd,Sm同位素研究。   方法亮点:   1. 实现单柱分离Sr,Nd,Sm,Ce。流程简单省时,回收率高,空白低;   2. 将Sr,Nd,Sm的TIMS高精度测定量由常规100-500 ng降低至30 ng。   该研究获得了金沙威尼斯欢乐娱人城战略性先导科技专项(B类)项目和国家自然科学基金项目的支持。   论文信息: Y. Xu (徐玉明),G. Wang* (王桂琴), Y. Zhen(杨振),Y. Zeng(曾玉玲), F. Guo(郭锋). A single-column separation procedure for Sr, Nd, and Sm in small-size samples and high-precision isotope measurements using TIMS with 1013 and 1012 amplifiers: Journal of Analytical Atomic Spectrometry. 论文链接 图1. 单柱TODGA树脂的Sr-Nd-Sm淋洗曲线 图2. Sr-Nd-Sm化学和仪器测定方法
    2023-12-14
  • 珍贝-黄岩海山链的深部结构及演化过程获得新进展
    近日,金沙威尼斯欢乐娱人城南海海洋研究所边缘海与大洋地质重点实验室(OMG)深部地球物理团队联合多家海洋单位在南海珍贝-黄岩海山链的研究上取得新进展。相关成果发表在国际地学期刊Tectonophysics(《构造物理》)上,博士贺恩远为论文第一作者,研究员赵明辉为论文通讯作者。全球海底已知的海山数量高达43454座,它们分别位于洋中脊、板内和岛弧区三种地质构造背景中,代表了不同的岩浆来源和演化过程。珍贝-黄岩海山链是南海东部次海盆停止扩张之后(15.5 Ma)岩浆沿着构造薄弱带上涌而形成,其岩石地球化学特征更接近板内热点海山,但其所处构造位置与洋中脊海山相似,因此它的形成机制和演化过程一直存在争论。为了揭示这个问题,研究团队对2011年在该区域开展的三维海底地震仪数据进行深度分析,并通过走时模拟获得了14条海山链南北向二维深部速度剖面,研究发现珍贝和黄岩海山的喷出/侵入比值均接近3,且顶部存在巨厚低速体,表明岩浆主要以喷出作用为主。此外,还发现海山下方岩石圈的有效弹性厚度仅3-5 km,表明海山是在海盆停止扩张后的三个百万年内快速完成主体建造和加载。海山平均岩浆通量(~0.03 m3/s )远远小于板内热点海山(> 0.6 m3/s),地壳厚度与速度的弱相关性则进一步指示了海山的形成与高温引起的地幔熔融关系较小。这项成果对于进一步认识南海广泛存在的扩张期后海山演化机制具有重要意义,也为海山的量化评估提供范本。工作得到国家自然科学基金联合基金(U2244221)和金沙威尼斯欢乐娱人城南海海洋研究所自主部署项目(SCSIO2023HC08)等项目联合资助。相关论文信息:Enyuan He*, Minghui Zhao*, Haibo Huang, Yuhan Li, Pinchuan Tan, Xuelin Qiu, Xubo Zhang, Kang Liu, Seismic structures of Zhenbei and Huangyan seamounts and their postspreading volcanic evolution, Tectonophysics, 869, 230102. doi.org/10.1016/j.tecto.2023.230102.论文链接:https://www.sciencedirect.com/science/article/pii/S0040195123004006图1. 下地壳平均速度与地壳厚度关系图
    2023-12-12
  • 研究揭示热点-转换断层影响洋中脊地形与洋壳厚度的新机制
    近日,金沙威尼斯欢乐娱人城南海海洋研究所边缘海与大洋地质重点实验室(OMG)的研究团队,在热点-转换断层-洋中脊相互作用方面取得重要进展。这项研究由研究员张帆和院士林间团队联合自然资源部第二海洋研究所研究员张涛、南方科技大学副教授周志远共同完成,相关成果发表在Geophysical Research Letters《地球物理研究快报》,论文第一作者为金沙威尼斯欢乐娱人城南海海洋研究所博士研究生张一诺。热点和洋中脊是地球上两大主要的岩浆活动区,它们之间的相互作用对地球的地壳形成具有重大影响。然而,转换断层的存在如何影响这一过程尚不明确。研究人员选择了位于格陵兰板块和欧亚板块交界处的莫恩斯洋中脊,通过分析地球物理观测数据,揭示了该地区洋脊轴部地形起伏、M值(岩浆作用对板块扩张的贡献比例)和洋壳厚度的变化特征,以及扬马延热点的影响范围。图1 北冰洋莫恩斯洋中脊地形图。利用基于有限元的地球动力学模拟软件ASPECT,研究人员建立了热点-洋中脊、热点-洋中脊-转换断层相互作用的三维地球动力学模型,并通过将模型结果与观测数据进行对比,估算了扬马延热点的规模(热点直径、温度异常及浮力通量)。研究发现,当热点位于转换断层下方时,转换断层的存在促进了热点-洋中脊相互作用的范围。该项研究对于理解热点-洋中脊-转换断层在不同空间位置下的相互作用模式具有重要意义。以上研究得到国家自然科学基金项目、金沙威尼斯欢乐娱人城项目和广州市科技项目等支持。文章链接:https://doi.org/10.1029/2023GL105871图2 热点-洋中脊和热点-洋中脊-转换断层相互作用模型对比图3 沿莫恩斯洋中脊从南到北观测数据与模型结果变化趋势的对比
    2023-12-12
  • Advanced Materials | 深圳先进院利用贵金属-卟啉设计坚固高效的单原子纳米酶用于鼻咽癌的靶向催化治疗
    这项研究不仅提出了增强单原子纳米酶的催化活性和化学稳定性的创新策略,而且还强调了MIrP作为一种有效的纳米药物用于靶向催化肿瘤治疗的巨大潜力。近日,金沙威尼斯欢乐娱人城深圳先进技术研究院阎锡蕴院士课题组在Advanced Materials上发表了题为Employing Noble Metal–Porphyrins to Engineer Robust and Highly Active Single-Atom Nanozymes for Targeted Catalytic Therapy in Nasopharyngeal Carcinoma的研究论文。该研究利用贵金属-卟啉系统合成了高活性和稳定的单原子纳米酶。通过锚定在卟啉中心的金属–N原子配位,成功合成了四种贵金属-卟啉(MxP,x代表Pt、Pd、Ru、Ir),以模拟天然过氧化物酶的活性位点。并且设计了一种针对EB病毒相关的鼻咽癌的靶向单原子纳米酶(MIrPHE)。这项研究不仅提出了增强单原子纳米酶的催化活性和化学稳定性的创新策略,而且还强调了MIrP作为一种有效的纳米药物用于靶向催化肿瘤治疗的巨大潜力。纳米酶是一类既有纳米材料的独特性能,又有催化功能的模拟酶。纳米酶具有催化效率高、稳定、经济和规模化制备的特点,它在医学、化工、食品、农业和环境等领域得到广泛应用。然而,纳米酶通常具有较低密度的活性位点和不均匀的元素组成,导致其催化活性远低于天然酶。单原子催化理念的提出促进了具有精确配位结构的单原子纳米酶(SANzymes)的发展。原子级分散既提高了金属原子的利用效率,又增加了活性位点的数量。同时,明确的配位结构为研究纳米酶的催化机制提供了可靠模型。相比于催化活性,对SANzymes在催化反应中的化学稳定性的研究较少。特定酸碱溶液或气体环境下会导致SANzymes的活性位点脱落和中毒。此外,单原子的金属表面自由能较高,容易引起活性位点的聚集,进一步降低活性下降。因此,合成兼具高活性和化学稳定性的SANzymes是其大规模应用的必要条件。在本文中,作者整合了贵金属-卟啉系统和金属有机框架(MOF)的优势,从头合成了4种贵金属-卟啉MOF SANzymes(MxP,x代表Pt、Pd、Ru、Ir),它们具有单原子分散和化学结构坚固的特征。通过对其进行类过氧化物酶(POD)活性筛选和靶向修饰,实现了对EB病毒相关鼻咽癌的精准靶向催化治疗(图1)。研究首先对所制备的纳米酶进行了系统性表征(图2),透射电镜及动态光散射等形貌分析揭示了MxP均呈近球形,粒径约为150 nm。通过球差电镜和元素表征分析,证明了所制备的MIrP和经典的MFeP上的各元素分布均匀,特别是活性位点的金属均呈单原子态,负载量依次为Fe(6.17 wt%), Ir(5.45 wt%), Ru(5.26 wt%),Pt(8.39 wt%)和Pd(7.66 wt%)。随后,研究人员对MxP的POD活性进行了评估(图3)。研究发现MIrP的催化活性远高于其他的MxP和经典的MFeP,其最适催化温度和pH范围均优于天然辣根过氧化物酶(HRP)。相比于MFeP,MIrP能够催化H2O2产生更高强度的自由基。重要的是,研究发现MIrP的比活力(Specific activity)为685.61 U mg?1,约为天然HRP酶(267.71 U mg?1)的2.6倍。据了解,MIrP是目前所有报道的SANzymes中POD活性最高的纳米酶。化学稳定性一直是SANzymes研究领域内不可忽略的问题。为了评估MIrP是否能克服这一缺陷,接下来研究人员对MIrP和MFeP进行了0-16周的常温储存,并检测了材料在不同储存时间的吸收特征和催化性能(图4)。结果显示不同储存时间的MIrP在420 nm处均表现出稳定的吸收峰。相比之下,MFeP的吸收峰在储存8周后明显下降,并在16周后衰减更加明显。0 -1 mM的H2O2处理后,MIrP的紫外-可见吸收光谱和催化活性几乎无变化。相反,随着H2O2浓度的增加,MFeP的吸收峰和催化性能逐渐减弱。最后,研究人员系统性评估了MIrPHE的体内抗肿瘤性能(图5)。通过在MIrP表面修饰EB病毒编码的LMP1的天然配体 (?)-Epigallocatechin-3-Gallate,成功构建出能够靶向EB病毒相关鼻咽癌的纳米酶(MIrPHE)。实验结果显示MIrPHE能够精确定位到肿瘤部位,基于超高的POD活性实现了出色的抗肿瘤作用。此外,MIrPHE还表现出高度的组织相容性和生物安全性。综上,本研究制备了多种贵金属-卟啉,以产生高活性和稳定的SANzymes,将开发的贵金属-卟啉进一步整合到稳定且生物安全的Zr-MOF中,为设计和合成高性能、稳定的SANzymes作为天然酶的替代品提供了宝贵的见解,并且所筛选的MIrP显示出突出的抗肿瘤作用。本文的共同第一作者为金沙威尼斯欢乐娱人城深圳先进技术研究院阎锡蕴课题组助理研究员王大吉、王杰,江西师范大学副教授高雪娇和深圳市第二人民医院副研究员丁辉,通讯作者为深圳先进院客座研究员阎锡蕴,课题组助理研究员王大吉,助理研究员王杰,深圳市第二人民医院教授聂国辉,金沙威尼斯欢乐娱人城生物物理研究所研究员范克龙作为共同通讯作者。深圳先进院为该论文第一单位。该工作受到国家自然科学基金,国家重点研发计划、广东省基础与应用基础研究基金和深圳合成生物学创新研究院等项目的支持。图1 | MxP的合成和靶向修饰策略(a)及其在EB病毒相关鼻咽癌的靶向催化治疗中的应用(b)图2 | MxP的形貌和元素表征图3 | MxP的POD活性表征图4 | MIrP的化学稳定性测试图5 | 体内实验评估MIrPHE的肿瘤靶向催化治疗效果原文链接
    2023-12-12
  • Light: science & application丨深圳先进院报道首个0D/2D异质结纳米复合材料
    团队基于构建的0D/2D无机异质结纳米复合材料,成功孕育出了偏振发光特性,并展示了发光-调光-探测于一体的多功能光学元型器件近日,金沙威尼斯欢乐娱人城深圳先进技术研究院碳中和所丁宝福团队在Light: science & application上,以A multifunctional optoelectronic device based on 2D material with wide bandgap为题撰文,报道了首个0D/2D偏振发光异质结,为偏振发光家族增添了新成员。该工作将宽带隙二维材料的优异调光特性和量子点的高效发光特性进行“联姻”,基于构建的0D/2D无机异质结纳米复合材料,成功孕育出了偏振发光特性,并展示了发光-调光-探测于一体的多功能光学元型器件。荧光偏振在科学和工程领域有多种应用,包括3D显示、光学数据存储、光学生物传感器和材料结构分析。开发高效稳定的偏振荧光材料具有重要的研究意义和实际应用价值。量子点由几百个甚至一千个原子组成,作为新晋的诺贝尔奖级材料,重新点燃了大众的科学兴趣。零维量子点由于其纳米尺度的量子约束效应,具有非常高的荧光量子效率、颜色纯度和颜色可调性。然而,传统的量子点尽管具有显著的荧光强度,但其典型特征是几何和光学各向同性,往往具有非偏振光发射,在一定程度上限制了荧光量子点在偏振光领域的应用。因此,基于量子点材料系统实现高效和偏振发光仍然是发光材料发展的关键前沿和挑战。金沙威尼斯欢乐娱人城深圳先进技术研究所的丁宝福、成会明和王锋利用“维度联姻”的概念将蓝色无机碳点耦合到2D纳米片上,创造了一个全无机的0D碳点/2D纳米片异质结发光系统(图1 a-c)。这一成就实现了一种结合高发光效率和偏振特性的蓝色发光材料的开发,为扩大偏振发光材料家族提供了一种新的方法。构建的0D/2D异质结构通过化学吸附诱导Ti-O-C键的形成,有效地锚定了0D碳点。通过将零维发光材料缺乏各向异性的高发光效率与二维材料强大的光偏振调制能力相结合,使两种低维材料的光学特性互补,从而实现碳点的偏振发光。此外,利用异质结的二向色吸收,实现了360-385 nm范围内的紫外光检测。该方式首次集成偏振光发射,紫外光检测和可见光调制的多功能光电器件的构建。本工作首次引入了全无机异质结构偏振发光纳米复合材料的概念,实现了偏振发光的突破。基于量子点材料系统实现高效偏振发光的挑战已经被巧妙地克服,扩大了偏振发光材料的家族。此外,集成光发射、调制和检测的多功能器件的构建为低能耗、智能或集成光学器件的发展引入了新思路。这些研究结果有望拓宽包括碳点在内的其他0D量子点的材料特性及其衍生的光学应用。这将为其他类型异质结发光材料的开发提供新的视角和方法。在未来,这些材料有望在常见的异质结领域有重要的应用,包括光催化、生物医学极化成像和光通信。深圳先进院博士后许洪玮为本文第一作者,深圳先进院副研究员丁宝福、成会明院士和王锋助理研究员为文章共同通讯作者。另外深圳理工大学(筹)研究生刘经炜、深圳先进院研究员唐永炳团队、博士后魏胜、龚芮、罗杰,以及华南师范大学陈心满教授研究团队等也对该工作做出重要贡献。该工作获得了国家自然科学基金、广东省创业科研团队计划项目、广东省科技规划项目、深圳市基础研究项目的支持。感谢华南师范大学陈心满教授团队和深圳先进院唐永炳研究员团队对数据收集、分析中的支持与帮助。图1 a-c分别是0D/2D纳米复合材料的合成与构建; d-f 分别是原器件结构示意图与发光调光、光探测性质。文章链接
    2023-12-12
  • 河口食物网抗生素结合态代谢物的生物富集机制取得新进展
    近日,金沙威尼斯欢乐娱人城南海海洋研究所热带海洋生物资源与生态重点实验室徐向荣团队在河口食物网抗生素结合态代谢物的生物富集机制取得了最新研究进展。相关研究成果“New insight into the bioaccumulation and trophic transfer of free and conjugated antibiotics in an estuarine food web based on multimedia fate and model simulation”发表在Journal of Hazardous Materials上。硕士吴念念为论文第一作者,研究员徐向荣、副研究员刘珊为共同通讯作者。抗生素作为一类抗菌性药物广泛用于治疗人类和动物疾病,在畜牧业和水产养殖业中用于提高养殖动物的生长速度。由于进入人和动物体内的抗生素不能被生物体完全吸收,大部分以原药或代谢物的形式经由尿液和粪便排出体外进入环境中,因此这类药物在环境中频繁检出。研究表明环境浓度的抗生素不仅会严重影响水生生物的生理平衡、繁殖力、生长发育和肠道微生物功能,还会引发高水平抗生素耐药性的传播,最终通过食物链威胁人类健康。已有研究主要集中在自由态抗生素在食物网中的生物富集和传递规律。除了暴露环境、理化参数和食物来源外,生物转化也是食物网中抗生素生物富集和传递的关键驱动因素。抗生素进入生物体后,可通过 相和 相代谢生成自由态或葡萄糖醛酸和硫酸盐结合态的代谢物。需要指出的是,微生物可将抗生素结合态代谢物重新转化为母体化合物,这表明结合态抗生素可能是环境抗生素的重要来源。因此,系统研究水生生物体中不同形态抗生素的生物富集特征和食物网传递规律,有助于我们更加准确评估抗生素带来的健康和生态风险。本研究首次运用酶解和非酶解提取方法,定量分析生物样品中不同形态抗生素的组成和浓度,探讨河口食物网中不同形态抗生素的生物富集特征和传递规律。研究发现抗生素在不同环境介质和生物体中普遍存在。除磺胺类和四环素外,大部分抗生素在不同水层中的占比相当,而喹诺酮类在沉积物中占主导地位。抗生素的分子量和疏水性可以调控其在各种环境介质中的分布。与非酶解样品相比,生物样品酶解后检出的抗生素浓度和种类均有所增加。该结果表明生物体内结合态抗生素不容忽视,仅定量分析自由态抗生素,将会严重低估抗生素在环境中的生态和健康风险。酶解后,更多数量的生物样品表现出对抗生素的生物富集潜力。在珠江口食物网中,自由态的脱水红霉素以及结合态的三甲氧苄啶和环丙沙星呈现生物稀释现象,而自由态的三甲氧苄啶和结合态的氧氟沙星则呈现生物放大趋势。本研究首次证实了结合态抗生素在河口食物网的传递规律,加深了人们对不同形态抗生素在河口食物网中的生物富集特征和传递规律的认识,可为准确评估抗生素的生态和健康风险提供重要的基础数据和技术支持。图1 河口食物网环境中自由态和结合态抗生素的赋存特征该研究得到了国家自然科学基金项目、国家重点研发计划项目、广州市科技计划项目、广东省科技规划项目的资助。相关论文信息:Nian-Nian Wu, Shan Liu*, Ru Xu, Qian-Yi Huang, Yun-Feng Pan, Heng-Xiang Li, Lang Lin, Rui Hou, Yuan-Yue Cheng, Xiang-Rong Xu*, New insight into the bioaccumulation and trophic transfer of free and conjugated antibiotics in an estuarine food web based on multimedia fate and model simulation, Journal of Hazardous Materials,465,2023,133088.文章链接:https://doi.org/10.1016/j.jhazmat.2023.133088
    2023-12-08
  • 亚热带生态所水资源高效利用技术2次入选水利部先进实用技术重点推广指导目录
    近日,水利部科技推广中心向金沙威尼斯欢乐娱人城亚热带农业生态研究所颁发了“喀斯特坡地陡崖-裸岩-土岩界面-硬化路多途径产流水联合集蓄技术”的技术推广证书,该项技术由陈洪松研究员和王克林研究员指导,环江站付智勇副研究员等完成。水利部依据《水利先进实用技术重点推广指导目录管理办法》,每年组织专家在全国范围内严格筛选形成100项左右重点推广指导目录。近日,水利部科技推广中心向金沙威尼斯欢乐娱人城亚热带农业生态研究所颁发了“喀斯特坡地陡崖-裸岩-土岩界面-硬化路多途径产流水联合集蓄技术”的技术推广证书,该项技术由陈洪松研究员和王克林研究员指导,环江站付智勇副研究员等完成。水利部依据《水利先进实用技术重点推广指导目录管理办法》,每年组织专家在全国范围内严格筛选形成100项左右重点推广指导目录。  生态高值经果林产业是广西大石山区实现乡村振兴的重要产业支柱,然而,受岩溶地质背景制约及极端干旱事件频发的双重影响下,无集中供水设施的分散型经果林普遍面临用水短缺、产量品质不稳定的问题。本技术为缓解该区经果林面临的旱季干旱缺水问题,巩固产业扶贫成果,确保产业可持续和农民稳步增收,提供了可选方案。  这是环江站喀斯特关键带水资源高效利用与岩溶干旱缓解技术第2次成功入选水利部先进实用技术重点推广指导目录。环江站于2020年向上报的“喀斯特坡地土岩界面产流水集蓄利用技术”同样入选该指导目录。  近年来,环江站通过创新喀斯特地下生态过程监测技术,建立喀斯特关键带地上-地下联动监测大平台,打开了喀斯特近地表水-土-岩相互作用的黑箱,深化了对喀斯特特殊地质背景下山坡水文路径和径流触发机制的认识。以上列入水利部先进实用技术重点推广指导目录的2项技术正是基于喀斯特山坡降雨产流过程及岩土结构-水文功能协同演化等理论新认识的技术研发和产业应用。推广证书
    2023-12-08
  • Nature Communications | Sc3.0重要进展,酿酒酵母染色体臂的精简与合成重构
    研究发现仅需20%的天然序列即可支持菌株存活,约45%的天然序列足以恢复菌株的稳健表型;并进而利用显著区别于天然序列的合成型序列构建了可替代内源chrXIIL来支持酵母存活的功能性人工染色体。作为包含了物种所有遗传信息的复杂序列,基因组存在普遍的冗余性。 除了维持生存所需的必需基因外,基因组内还具有大量辅助型核心基因,使得生命系统在面对复杂环境变化或者部分基因功能丧失时依旧能维持正常运转。合成基因组学作为新兴的研究领域,以突破从头设计与合成物种基因组的相关理论和技术为目标,致力于解答DNA序列与生物学功能的关联,拓展人类对生命本质的认知和理解,合成新型人造生命。目前,人们已经实现了对多个病毒、细菌的基因组的设计与合成,并创建了仅含有473个基因的最小原核基因组。由于基因组大小和复杂度的增加,真核生物基因组的合成面临更多挑战。世界上首个真核生物基因组合成计划—酿酒酵母基因组合成计划(Sc2.0)经过17年的不懈努力,近期完成了所有酵母染色体的人工合成(见BioArt 十篇齐发!迈向人造真核全基因组,国际酿酒酵母基因组合成计划(Sc2.0)宣布第二阶段重大进展报道)。在Sc2.0中,通过对重复序列的删减等预计可实现约8%的酵母基因组的精简。为了进一步探索酵母基因组序列的必需性和可塑性,中国农业科学院农业基因组研究所研究员、金沙威尼斯欢乐娱人城深圳先进技术研究院客座研究员戴俊彪联合曼彻斯特大学教授蔡毅之和纽约大学教授Jef Boeke发起了Sc3.0计划1,旨在对酵母基因组进行深度精简和重构设计,构建首个最小酵母基因组,探究真核生命的核心元素。2023年11月30日,金沙威尼斯欢乐娱人城深圳先进技术研究院戴俊彪团队和赵乔团队在Nature Communications在线发表题为Building a eukaryotic chromosome arm by de novo design and synthesis的研究论文,通过自下而上的设计策略指导酿酒酵母12号染色体左臂(chrXIIL)的深度精简和优化。研究发现仅需20%的天然序列即可支持菌株存活,约45%的天然序列足以恢复菌株的稳健表型;并进而利用显著区别于天然序列的合成型序列构建了可替代内源chrXIIL来支持酵母存活的功能性人工染色体。这是戴俊彪团队继2021年利用Sc2.0合成染色体中引入的重排系统(SCRaMbLE)建立基于非理性随机删减的基因组精简策略后2(见BioArt Genome Biology两连发 戴俊彪组报道人工基因组高效简化策略——Sc3.0正式拉开序幕报道),取得的Sc3.0计划的又一重要进展。酿酒酵母中必需基因定义为敲除该基因后菌株不能在富营养培养基上存活。系统性基因敲除的研究表明约80%酵母基因都是非必需基因。酿酒酵母中存在复杂的相互作用网络,90%以上的非必需基因与其他基因存在遗传相互作用。多基因的同时移除极易导致合成致死现象,使得对酵母染色体及基因组的理性精简具有极大的挑战性。为探究酵母基因组理性精简的设计路线,在本研究中研究人员选择了酿酒酵母chrXIIL为研究对象。chrXIIL全长150kb,编码74个基因,包含10个必需基因。首先,研究人员设计了一个新型线性染色体骨架,便于后续多个版本人工染色体的高效组装。为了测试排布方式对于左臂上必需基因功能的影响,研究人员构建了不同版本的必需基因染色体。结果显示,相较于转录方向,调控序列的改变对基因的转录水平具有更为显著的影响,而构建的必需基因染色体均可以很好地替代内源必需基因的功能。随后,研究人员通过同源重组介导的染色体截短技术在二倍体中实现了其中一条chrXIIL的整体删除,发现仅必需基因染色体不足以替代左臂支持菌株生存,需要增加额外的关键基因。通过对11基因组合(10个必需基因+1个非必需基因)的系统性测试,研究人员未获得可支持菌株存活的组合。但是,即使只需要回补2个基因,也存在超过1000种可能,亟需有效的理性原则来指导关键基因的筛选。为了量化遗传相互作用数目,本研究将与特定基因存在遗传相互作用的其他基因的数目(GGI)作为一个评估参数。分析发现,必需基因相较于非必需基因存在更高的GGI, 且90%的高GGI基因(超过必需基因GGI的平均值)与其他基因存在合成致死的现象。基于“更高GGI的基因的功能更重要”的假设,研究人员以必需基因GGI平均值的两倍作为阈值,筛选获得两个关键基因,并构建了带有12个基因的人工染色体,发现该染色体可成功替代内源染色体臂来支持菌株存活,但存在严重的生长缺陷。为修复该菌株的生长缺陷,研究者通过选择性回补额外13个非必需基因(其他高GGI基因和单敲除后存在生长缺陷的基因),构建了表型显著回复的新菌株,证实了优化原则的有效性。随后,研究人员利用转录组数据鉴定了另外2个重要基因,结果显示回补27个基因的菌株的生长得到了显著恢复,突出了组学数据对于精简染色体的优化迭代的指导意义。合成菌株的代谢组数据分析结果显示,合成菌株中多个代谢途径受到了影响,涉及到多种氨基酸代谢通路,并且不同菌株差异性代谢产物主要集中在ABC转运蛋白通路。这些结果提示合成菌株中氨基酸的跨膜运输或者利用方面存在一定的功能缺陷,进而影响菌株生长,为解析菌株生长抑制机制提供了一种潜在方案。在实现左臂序列的精简后,研究人员采用了大胆的策略来对序列进行最大程度的改编设计:1)一种氨基酸仅对应一个优化密码子的策略来重构基因编码序列,2)使用完全不同于天然序列的合成型启动子与终止子来改编调控序列。通过高效的组装建库和筛选方案,研究人员成功实现了24个基因的功能重构,并利用重构的转录单元,构建了可单独支持细胞存活的全人工序列染色体。综上所述,该研究在染色体臂范围内探究了支持生存的最小基因集,不仅达到了前所未有的精简程度,还提出了一种新型优化策略,为酵母基因组的系统精简提供了可能的解决方案。与此同时,该研究引入具有前瞻性的重编设计,并证实了利用显著区别于天然序列的全人工染色体替代天然染色体臂功能的可行性。本研究结果揭示了酵母基因组序列令人惊叹的冗余性和可塑性。金沙威尼斯欢乐娱人城深圳先进技术研究院副研究员姜双英、厦门大学教授罗周卿为论文共同第一作者。戴俊彪研究员与赵乔研究员为论文通讯作者。感谢中山大学眼科中心副研究员肖传乐为全长转录组分析提供的帮助。该研究获得国家重点研发计划、国家自然科学基金、广东省基础与应用基础研究基金、金沙威尼斯欢乐娱人城大科学计划、深圳市科技计划及深圳合成生物学创新研究院等多个项目的支持。文章链接参考文献:1. Dai, J., Boeke, J.D., Luo, Z., Jiang, S. & Cai, Y. Sc3.0: revamping and minimizing the yeast genome. Genome Biology 21, 205 (2020).2. Luo, Z. et al. Compacting a synthetic yeast chromosome arm. Genome Biol 22, 5 (2021).
    2023-12-06
  • Nature Catalysis | 二氧化碳衍生的低碳原料制备粮食化合物
    通过代谢重构和葡萄糖抑制调控,使葡萄糖和蔗糖的产量达到每升数十克,这项研究有助于丰富基于可再生能源驱动的农业新范式。12月5日,金沙威尼斯欢乐娱人城深圳先进技术研究院合成生物学研究所(以下简称“合成所”)于涛课题组与Jay D. Keasling课题组合作,在Nature Catalysis发表了题为Metabolic engineering of carbohydrate-derived foods and chemicals production in yeast的研究成果。二氧化碳合成的低碳化合物C1-3作为发酵原料,为微生物可持续生产食品及化学品提供了一种具有无限潜能的方式。该研究利用合成生物学和代谢工程手段开发的酵母细胞平台,能将低碳化合物例如甲醇、乙醇、异丙醇等,转化为糖及糖衍生物,包括葡萄糖、肌醇、氨基葡萄糖、蔗糖和淀粉。通过代谢重构和葡萄糖抑制调控,使葡萄糖和蔗糖的产量达到每升数十克。这项研究有助于丰富基于可再生能源驱动的农业新范式。Jay D. Keasling实验室副研究员汤红婷、于涛实验室研究助理吴良焕和助理研究员郭姝媛为该论文的共同第一作者, 美国加州大学伯克利分校教授Jay D. Keasling和深圳先进院研究员于涛为该论文的共同通讯作者。农业为社会提供食物和许多原材料,但目前面临着巨大的挑战。预计到2050年,全球人口将增长到近90-110亿人,全球对食物的需求将增加70%。受到有限的可耕地和不断加剧的气候变化威胁,农业将几乎不可能满足日益增长的需求。此外,随着人类活动加剧,大量二氧化碳排放造成的全球气候变化和环境问题严重影响了全球经济和环境可持续发展。因此,开发一种经济可行且不占用可耕地就能将CO2转变成糖衍生食品和化学品的技术备受瞩目。于涛课题组致力于利用合成生物学方法,解决可持续制造、绿色能源的生物存储与粮食安全等重大问题。在过去几十年里,大气中的CO2通过热化学、电化学、光化学、生化方以及一些耦合策略转化为简单的低碳化合物(C1-3)已经取得了巨大进展。然而,通过这些平台生产复杂的化合物是极其困难的。而以这些平台合成的低碳化合物为底物,可通过微生物细胞工厂转化生产高碳化合物。于涛课题组的前期工作(Nature Catalysis, 2022,https://mp.weixin.qq.com/s/qTTRuVuwQytCG379Ybe8SQ )表明,通过电化学偶联微生物细胞工厂,成功实现了将CO2变成葡萄糖和脂肪酸(“空气变粮油”),这为将CO2可持续转变成糖衍生食品和化学品提供了一种可行的、高效的方法,其具有更低的成本、更快的速度和更高的生产能力,该成果入选2022年由两院院士评选出的“中国十大科技进展新闻”。随后,于涛课题组又成功的在酵母细胞内构建了一个合成能量系统(细胞“双引擎”设计),可以支持细胞生长并助力脂肪酸高效合成(Nature Metabolism, 2022, https://mp.weixin.qq.com/s/blgy-XiWRv1EAIn_wVVYZg) 。在本研究中,研究团队首先通过分析酵母对不同低碳化合物的利用情况,拓展了微生物细胞工厂的碳源范围。除了乙醇,酿酒酵母可利用乙二醇(C2)、异丙醇(C3)、丙酸(C3)和甘油为碳源进行细胞生长和葡萄糖生产。进而,通过碳源的混合使用以及比例调控,进一步的提高了细胞生长和葡萄糖产量。通过工程毕赤酵母,能够将甲醇(C1)高效的转化为葡萄糖,其摇瓶产量可达到1.08 g/L, 发酵罐产量达到了13.41 g/L。进而,研究团队以乙醇、甲醇、异丙醇和甘油为碳源,进一步拓展了碳水化合物的多样性,包括五碳糖木糖、木糖醇,六碳糖化合物肌醇、氨基葡萄糖,二糖化合物蔗糖和多糖化合物淀粉。通过代谢工程手段和异源合成途径的进入,获得工程酵母能成功的将低碳化合物转化为单糖木糖、木糖醇、肌醇和氨基葡萄糖。其中肌醇和氨基葡萄糖的最高摇瓶产量分别达到了228.71mg/L和69.99 mg/L。除了单糖,研究人员还实现更高碳含量的二糖的合成。在该研究中,通过引入集胞藻的蔗糖合成途径和强化内源代谢流,获得的工程菌株能高效的利用低碳化合物为碳源合成蔗糖,在此基础上,通过表达蔗糖转运蛋白,实现了蔗糖的分泌生产,其摇瓶产量可达到1.17g/L,发酵产量可达到25.41 g/L。更令人兴奋的是,研究人员实现了我们生活中方方面面都涉及到的淀粉的微生物合成,其重要性不言而喻。该研究通过引入两条淀粉合成途径和调控内源糖原合成及降解途径,打通了从低碳化合物合成淀粉的合成路径,其摇瓶产量可达到341.59mg/L。这些研究成果实现微生物的“农业生产”。最后,该研究还提供了以低碳化合物为碳源高效生产高碳化合物的研究方法。虽然合成这些化合物需要引进外源途径,但其中枢代谢皆为糖异生途径。为了有效的提高葡萄糖及其衍生物的产量,研究人员以葡萄糖为研究案例,通过基因过表达和调控葡萄糖抑制效应等手段强化糖异生途径来提高葡萄糖产量。研究结果表明,调控葡萄糖抑制效应能够有效的提高葡萄糖的产量,提高幅度近一倍。这不仅为葡萄糖及其衍生物的产量提高提供示例,该研究构建的葡萄糖合成菌株也为进一步研究葡萄糖抑制效应提供了平台。糖类,脂肪酸,蛋白质是人类三大基本营养物质。近些年,单细胞蛋白逐渐成为蛋白质的重要来源与研究热点。在该研究中,工程酵母的蛋白含量约达到了细胞干重的50%,未来该技术有望以低碳原料实现糖类粮食化合物的高效产出,同时还能实现单细胞蛋白的副产。近日,围绕国家双碳和粮食安全战略,由金沙威尼斯欢乐娱人城深圳先进技术研究院与中海石油化学股份有限公司共同组建的“碳中和与粮食安全交叉创新联合实验室”在北京正式揭牌成立(https://mp.weixin.qq.com/s/VofwH2yeNFFOM1bhJzkZ7A)。于涛课题组将在联合实验室资金支持下继续推进该方向的相关课题研究。该研究工作得到了国家重点研发计划项目(2020YFA0907800和2021YFA0911000),招商局集团,国家自然科学基金项目(32071416)金沙威尼斯欢乐娱人城战略重点研究计划(XDB0480000),广东省绿色生物制造重点专项(2022B1111080005),深圳市微生物药物智能制造重点实验室(ZDSYS20210623091810032),中海石油化学股份有限公司与深圳合成生物学创新研究院的资金支持。也得到了深圳合成生物研究重大科技基础设施提供的仪器支持和质粒构建的技术帮助以及深圳先进技术研究院质谱基础设施提供的代谢物分析帮助。此外,中国科学技术大学教授曾杰、华南理工大学教授黄明涛、深圳先进院研究员罗小舟提供了实验材料和论文写作上的帮助。文章链接
    2023-12-08
  • 稻田土壤甲烷微生物同化效应与机制研究取得进展
    由于长期淹水状态,稻田是温室气体甲烷的重要排放源。事实上稻田土壤产生的甲烷,大部分在排放到空气前被好氧甲烷氧化菌所氧化。而好氧甲烷氧化菌可以分为I型和II型两个类群,它们具有不同的生理生态特性和代谢差异。其中甲烷被甲烷氧化菌氧化过程中,一部分碳被氧化成CO2排放到空气中,另一部分被转为微生物细胞物质并最终进入土壤成为SOC,然而,后者很少引起关注,两类甲烷氧化菌在稻田土壤甲烷碳转化的相对贡献及作用机制目前尚不清楚。明确稻田土壤中甲烷碳转化的微生物机制对预测稻田生态系统甲烷排放和碳循环具有重要意义。由于长期淹水状态,稻田是温室气体甲烷的重要排放源。事实上稻田土壤产生的甲烷,大部分在排放到空气前被好氧甲烷氧化菌所氧化。而好氧甲烷氧化菌可以分为I型和II型两个类群,它们具有不同的生理生态特性和代谢差异。其中甲烷被甲烷氧化菌氧化过程中,一部分碳被氧化成CO2排放到空气中,另一部分被转为微生物细胞物质并最终进入土壤成为SOC,然而,后者很少引起关注,两类甲烷氧化菌在稻田土壤甲烷碳转化的相对贡献及作用机制目前尚不清楚。明确稻田土壤中甲烷碳转化的微生物机制对预测稻田生态系统甲烷排放和碳循环具有重要意义。金沙威尼斯欢乐娱人城亚热带农业生态研究所流域农业环境研究中心吴金水研究员团队成员沿我国东部水稻分布区选择了四个气候带(中温带、暖温带、亚热带和热带)采集典型稻田土壤样品,其中,每个气候带选择6个稻田土壤分析了甲烷氧化菌群落特征,并设置13CH4示踪模拟培养试验,测定土壤甲烷氧化速率和甲烷碳转化效率。结果表明,与热带和亚热带酸性稻田土壤相比,暖温带碱性稻田土壤甲烷氧化速率和碳转化效率更高,这主要是由于甲烷氧化菌生态位分化和代谢差异引起。热带和亚热带低pH值土壤更适宜II型甲烷氧化菌,而暖温带高pH值土壤更适宜I型甲烷氧化菌。I型甲烷氧化菌通过RuMP碳同化途径比II型甲烷氧化菌通过丝氨酸途径具有更高的碳转化效率。基于13C同位素磷脂脂肪酸(PLFA)分析结果进一步支撑了这一观点,I型甲烷氧化菌代表性C16 PLFA中13C丰度和含量远高于II型甲烷氧化菌代表性C18 PLFA中13C丰度和含量。据此得出结论:稻田土壤甲烷氧化和甲烷碳转化过程中I型甲烷氧化菌起主导作用。因此,在全球气候变化背景下,有必要将特殊的功能微生物类群(如甲烷氧化菌)纳入温室气体排放预测和土壤碳通量估算模型。该项研究近期以题为Type I methanotrophs dominated methane oxidation and assimilation in rice paddy fields by the consequence of niche differentiation发表在土壤学领域一区期刊Biology and Fertility of Soil上。该研究得到了“十四五”国家重点研发计划(2021YFD1901204, 2021YFD1901203),国家自然科学基金(42377348, 42177295)等的共同资助。论文链接四个气候区稻田土壤甲烷氧化速率及碳转化效率稻田土壤甲烷碳转化的微生物机制
    2023-12-08
Baidu
sogou